ALGEBRA MAST30005 SEMESTER 12017

JON XU

Contents

1. Semi-direct products 2
2. Central extensions 4
3. The classification of finitely generated modules over PIDs, and its corollaries 5
4. Miscellaneous 6

These are notes for Nora Ganter's MAST30005 Algebra course, written by Jon Xu, tutor for the Thursday 3:15PM practise class. These were written by me for the purpose of processing certain parts of the course, and is not intended to completely cover the material. In fact quite a lot is missing, and some statements are made without proof (exercise: fill in the proofs!). This is DEFINITELY NOT a substitute for attending the lectures/consultations/tutorials.

Use at your own risk! Any constructive comments are welcome, my email address is

> jyxu[at]student.unimelb.edu.au.

1. Semi-direct products

An exact sequence is

$$
G_{0} \xrightarrow{d_{0}} G_{1} \xrightarrow{d_{1}} G_{2} \xrightarrow{d_{2}} \cdots \xrightarrow{d_{n-1}} G_{n},
$$

where

- The G_{i} 's are groups,
- The d_{i} 's are group homomorphisms,
- $\operatorname{ker}\left(d_{i+1}\right)=\operatorname{im}\left(d_{i}\right)$ for all i.

A short exact sequence is an exact sequence

$$
1 \rightarrow N \xrightarrow{i} G \xrightarrow{p} H \rightarrow 1 .
$$

The above short exact sequence splits if there exists a homomorphism s:H $\rightarrow G$ such that $p \circ s=1_{H}$. In this case we write

$$
1 \rightarrow N \stackrel{i}{\rightarrow} G \underset{s}{\stackrel{p}{\rightleftarrows}} H \rightarrow 1 .
$$

In this case, we have an action of H on N

$$
\begin{aligned}
H & \rightarrow \operatorname{Aut}(N) \\
h & \mapsto s(h)(-) s(h)^{-1}=(-)^{h}
\end{aligned}
$$

Given two groups N and H and an action of H on N, we define the semidirect product of N and H to be the set

$$
N \rtimes H=\{(n, h) \mid n \in N, h \in H\}
$$

with multiplication defined by

$$
(n, h)(m, k)=\left(n \cdot m^{h}, h k\right) .
$$

Lemma 1.1. If

$$
1 \rightarrow N \stackrel{i}{\rightarrow} G \underset{s}{\stackrel{p}{\rightleftarrows}} H \rightarrow 1 .
$$

is a split short exact sequence, then the map

$$
\begin{aligned}
\Phi: N \rtimes H & \longrightarrow G \\
(n, h) & \longmapsto i(n) s(h) .
\end{aligned}
$$

is an isomorphism of groups.

Proof. Homomorphism.

$$
\begin{aligned}
\Phi((n, h)) \Phi((m, k)) & =i(n) s(h) i(m) s(k) \\
& =i(n) s(h) i(m) s(h)^{-1} s(h) s(k) \\
& =i(n) m^{h} s(h k) \\
& =\Phi\left(\left(n m^{h}, h k\right)\right) \\
& =\Phi((n, h)(m, k)) .
\end{aligned}
$$

Bijective. Decompose G into right cosets of N, i.e

$$
G=\sqcup_{h \in H} N s(h)
$$

and $\{s(h) \mid h \in H\}$ is a set of representatives.
Proposition 1.2. The converse to the above is true (TO DO?).
Example 1. The following is a split short exact sequence:

$$
1 \rightarrow S O(2) \xrightarrow{i} O(2) \underset{s}{\stackrel{p}{\rightleftarrows}}\{ \pm 1\} \rightarrow 1 .
$$

where

$$
s(1)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad s(-1)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Hence $O(2)=S O(2) \rtimes\{ \pm 1\}$.

The Klein four group is $K_{4}=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
The tetrahedral group T is the subgroup of $S O(3)$ that stabilises a tetrahedron centered at 0 in \mathbb{R}^{3}. That is,

$$
T=\{g \in S O(3) \mid g \cdot A=A\},
$$

where A is an tetrahedron with center at 0 .
The alternating group A_{n} is the subgroup of S_{n} of permutations that can be written as a product of an even number of transpositions. Note that $T \cong A_{4}$.

The octohedral group O is the subgroup of $S O(3)$ that stabilises an octohedron centered at 0 in \mathbb{R}^{3}. Note that $O \cong S_{4}$.

The icoshedral group I is the subgroup of $S O(3)$ that stabilises an icosohedron centered at 0 in \mathbb{R}^{3}. Note that $I \cong S_{5}$.
Proposition 1.3. Let $A \in S O(3)$. There exists positively oriented orthonormal basis $\mathcal{B}=$ $\left\{b_{1}, b_{2}, b_{3}\right\}$ such that

$$
[A]_{\mathcal{B}}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In other words, there exists an invertible matrix B (WITH POSITIVE DETERMINANT?) such that

$$
A=B\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] B^{-1} .
$$

Theorem 1.4 (Artin, Theorem 6.12.1). Let H be a finite subgroup of $S O(3)$. Then exactly one of the following is true:

- H is a cyclic group C_{k} of rotations by mutiples of $2 \pi / k$ about a line, with $k \in \mathbb{Z}_{\geq 1}$,
- H is a dihedral group D_{k} of symmetries of a regular k-gon.
- H is the tetrahedral group T (which has order 12)
- H is the octahedral group O (which has order 24)
- H is the icohosedral group I (which has order 60).

2. Central extensions

The center of \tilde{G} is

$$
Z(\tilde{G})=\{z \in \tilde{G} \mid \text { if } g \in \tilde{G} \text { then } z g=g z\}
$$

A central extension is a short exact sequence

$$
1 \rightarrow C \xrightarrow{i} \tilde{G} \xrightarrow{p} G \rightarrow 1 .
$$

such that $i(C) \subseteq Z(\tilde{G})$. Topic 2 of Tutorial 1 walks us through how to (re)construct \tilde{G} after choosing a 2-cocycle $\beta: G \times G \rightarrow C$. WHAT IS THE PRECISE DEFINITION OF A 2-cocyle?

Example 2. The following is a central extension:

$$
1 \rightarrow\{1,-1\} \xrightarrow{i}\{1,-1, i,-i\} \xrightarrow{p}\{1,-1\} \rightarrow 1
$$

where

$$
\begin{aligned}
i(1) & =1, i(-1)=-1 \\
p(1)=1, p(-1) & =1, p(i)=-1, p(-i)=-1 .
\end{aligned}
$$

Choose $\tilde{1}=-1 \in p^{-1}(1)$ and $\tilde{-1}=i \in p^{-1}(-1)$. Then, following Question 1, Topic 2, define

$$
\beta(1,1)=-1, \beta(1,-1)=-1, \beta(-1,1)=-1, \beta(-1,-1)=1 .
$$

Let

$$
\tilde{G}_{\beta}=\{1,-1\} \times\{1,-1\}
$$

where \times means the Cartesian product (and not the direct product). Define a multiplication $\star: \tilde{G}_{\beta} \times \tilde{G}_{\beta} \rightarrow \tilde{G}_{\beta}$ by

$$
(a, g) \star(b, h)=(a b \beta(g, h), g h) .
$$

Computing the multiplication table of \tilde{G}_{β} :

\star	$(1,1)$	$(1,-1)$	$(-1,1)$	$(-1,-1)$
$(1,1)$	$(-1,1)$	$(1,-1)$	$(1,1)$	$(-1,-1)$
$(1,-1)$	$(-1,-1)$	$(1,1)$	$(1,-1)$	$(-1,1)$
$(-1,1)$	$(1,1)$	$(1,-1)$	$(-1,1)$	$(-1,-1)$
$(-1,-1)$	$(1,-1)$	$(-1,1)$	$(-1,-1)$	$(1,1)$

where the (i, j) entry is row $i \star$ column j. Using this table, one can check that $(-1,1)$ is the identity for $\tilde{G}_{\beta},(1,1)$ has order $2,(-1,-1)$ and $(1,-1)$ both have order 4 . This suggests that the $\operatorname{map} \psi: \tilde{G}_{\beta} \rightarrow\{1,-1, i,-i\}$ given by

$$
\psi(-1,1)=1, \psi(1,1)=-1, \psi(-1,-1)=i, \psi(1,-1)=-i
$$

is an isomorphism of groups, but to prove this, we need to check that they have the same multiplication tables.

Example 3. (The Hopf Fibration). See $\S 9.4$ of Artin.
The 2-dimensional special unitary group is

$$
\begin{aligned}
S U(2) & =\left\{A \in S L_{2}(\mathbb{C}) \mid A \bar{A}^{t}=1\right\} \\
& =\left\{\left.\left[\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right] \right\rvert\, a, b \in \mathbb{C}, a \bar{a}+b \bar{b}=1\right\} .
\end{aligned}
$$

The map

$$
\left.\begin{array}{rl}
& S U_{2}
\end{array} \quad \longrightarrow S^{3}, \begin{array}{cc}
x_{0}+x_{1} i & x_{2}+x_{3} i \\
-x_{2}+x_{3} i & x_{0}-x_{1} i
\end{array}\right] \longmapsto\left(x_{0}, x_{1}, x_{2}, x_{3}\right),
$$

is a bijection. Note that

$$
\begin{aligned}
i=\left[\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right] & \longmapsto
\end{aligned}(1,0,0,0),(0,1,0,0)
$$

The equator of $S U_{2}$ is

$$
E=\left\{P \in S U_{2} \mid \operatorname{trace}(P)=0\right\} .
$$

In the 3 -sphere S^{3}, the equator corresponds to

$$
E=\left\{\left(0, x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Given $P \in S U_{2}$, the conjugation action by P on E, denoted γ_{P}, rotates the sphere $E=S^{2}$ (see Artin). This gives us a surjective homomorphism

$$
\begin{aligned}
p: S U(2) & \longrightarrow S O(3) \\
P & \longmapsto \gamma_{P}
\end{aligned}
$$

and the following is a central extension:

$$
1 \rightarrow\{1,-1\} \xrightarrow{i} S U(2)(\cong \operatorname{Spin}(3)) \xrightarrow{p} S O(3) \rightarrow 1 .
$$

This should help us understand Topic 2, Question 5, since the groups mentioned are finite subgroups of $S U(2)$ and $S O(3)$.

3. The classification of finitely generated modules over Pids, and its COROLLARIES

Theorem 3.1 (Theorem 5, Section 12.1, Dummit-Foot). (Fundamental Theorem, Existence: Invariant Factor Form) Let R be a PID and let M be a finitely generated R-module. Then
(1) There exists $r \in \mathbb{Z}_{\geq 0}$ and $a_{1}, a_{2}, \ldots, a_{m} \in R$ such that $a_{1}, a_{2}, \ldots, a_{m}$ are not units in R and $a_{1}\left|a_{2}\right| \ldots \mid a_{m}$ such that

$$
M \cong R^{r} \oplus R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

(2) M is torsion-free if and only if M is free.
(3)

$$
\operatorname{Tor}(M) \cong R /\left(a_{1}\right) \oplus R /\left(a_{2}\right) \oplus \cdots \oplus R /\left(a_{m}\right) .
$$

In particular, M is a torsion module if and only if $r=0$ and in this case the annihilator of M is the ideal $\left(a_{m}\right)$.

3.1. The Jordan normal Form.

4. Miscellaneous

4.1. Generators and Relations. From Arun Ram's website and $\S 6.3$ of Dummit and Foote.

Let S be a set (sometimes called the set of letters). A free group on S is a group $F(S)$ such that if G is a group and $\psi: S \rightarrow G$ is a function then there exists a unique homomorphism $\Phi: F(S) \rightarrow G$ such that $\Phi \circ i=\psi$.

A word on S is a sequence

$$
\left(s_{1}, s_{2}, \ldots\right) \text { where } s_{i} \in S \cup S^{-1} \cup\{1\} \text { and } s_{i}=1 \text { for all } i \text { sufficiently large. }
$$

A word $\left(s_{1}, s_{2}, \ldots\right)$ is reduced if
(1) $s_{i+1} \neq s_{i}^{-1}$ for all i with $s_{i} \neq 1$, and
(2) if $s_{k}=1$ for some k, then $s_{i}=1$ for all $i \geq k$.

Let

$$
F(S) \text { be the set of reduced words on } S \text {. }
$$

Proposition 4.1. $F(S)$ is the unique (up to isomorphism) free group on S.

Let G be a group. A presentation of G is an exact sequence

$$
R \rightarrow H \rightarrow G \rightarrow 1
$$

where R and H are free groups. A group G is presented by generators $g_{1}, g_{2}, \ldots, g_{n}$ and relations $r_{1}, r_{2}, \ldots, r_{m}$ if

$$
F\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \xrightarrow{\psi} F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \xrightarrow{p} G \rightarrow 1 .
$$

is an exact sequence, where

$$
\psi\left(y_{j}\right)=r_{j}, \quad p\left(x_{i}\right)=g_{i} .
$$

Write

$$
G=\left\langle g_{1}, g_{2}, \ldots, g_{n} \mid r_{1}=r_{2}=\cdots=r_{m}=1\right\rangle
$$

where $r_{i}=r_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ are words in $g_{1}, g_{2}, \ldots, g_{n}$. This means that

$$
G=F(S) / N\left(r_{1}, r_{2}, \ldots, r_{m}\right)
$$

where $N\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ is the minimal normal subgroup containing $r_{1}, r_{2}, \ldots, r_{m}$.
Proposition 4.2. Let $\hat{f}:\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \rightarrow H$ be a function. If the relations $r_{1}=r_{2}=\cdots=$ $r_{k}=1$ are also satisfied by $\hat{f}\left(g_{1}\right), \hat{f}\left(g_{2}\right), \ldots \hat{f}\left(g_{n}\right)$ then \hat{f} uniquely extends to a homomorphism $f: G \rightarrow H$.

Proof. Let

$$
F\left\{y_{1}, y_{2}, \ldots, y_{m}\right\} \xrightarrow{\psi} F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \xrightarrow{\pi} G \rightarrow 1 .
$$

be a presentation of G, where

$$
\psi\left(y_{j}\right)=r_{j}, \quad \pi\left(x_{i}\right)=g_{i} .
$$

Define $\pi^{\prime}: F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow H$ by defining

$$
\pi^{\prime}\left(x_{i}\right)=\hat{f}\left(g_{i}\right)
$$

and uniquely extending to the rest of $F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ by the universal property of free groups. Then $\operatorname{ker} \pi \subseteq \operatorname{ker} \pi^{\prime}$ (HUH??? I THINK THIS IS WHAT 'the relations $r_{1}=r_{2}=\cdots=r_{k}=1$ are also satisfied by $\hat{f}\left(g_{1}\right), \hat{f}\left(g_{2}\right), \ldots \hat{f}\left(g_{n}\right)^{\prime}$ MEANS) so that the map

$$
\begin{aligned}
f: G \cong F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} / \operatorname{ker} \pi & \longrightarrow H \cong F\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} / \operatorname{ker} \pi^{\prime} \\
g \operatorname{ker} \pi & \longmapsto g \operatorname{ker} \pi^{\prime}
\end{aligned}
$$

is a well defined group homomorphism.

