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2 JON XU

These are notes for Nora Ganter’s MAST30005 Algebra course, written by Jon Xu, tutor for
the Thursday 3:15PM practise class. These were written by me for the purpose of processing
certain parts of the course, and is not intended to completely cover the material. In fact quite a
lot is missing, and some statements are made without proof (exercise: fill in the proofs!). This
is DEFINITELY NOT a substitute for attending the lectures/consultations/tutorials.

Use at your own risk! Any constructive comments are welcome, my email address is

jyxulat]student.unimelb.edu.au.

1. SEMI-DIRECT PRODUCTS

An ezxact sequence is

dn—l

d d d
G0—0>G1—1>G2—2>"'—>Gn,

where
e The G;’s are groups,

e The d;’s are group homomorphisms,
° ker(diﬂ) = 1m(dl) for all <.

A short exact sequence is an exact sequence

1 NSGeB HS.

The above short exact sequence splits if there exists a homomorphism s: H — G such that
pos = 1g. In this case we write

: D
1-NSG=2H — 1.

s

In this case, we have an action of H on N

H — Aut(N)
heom o s(h)(=)s(h)™h = (=)"

Given two groups N and H and an action of H on N, we define the semidirect product of N
and H to be the set

NxH={(n,h)|ne N,he H}
with multiplication defined by
(n,h)(m, k) = (n-m", hk).
Lemma 1.1. If

. p
1-NSG=2H — 1.

s

18 a split short exact sequence, then the map

®: NxH — G
(n,h) — i(n)s(h).

18 an tsomorphism of groups.
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Proof. Homomorphism.

Bijective. Decompose G into right cosets of N, i.e

G = UpenNs(h)
and {s(h) | h € H} is a set of representatives. O
Proposition 1.2. The converse to the above is true (TO DO?).

Example 1. The following is a split short exact sequence:

1 5 50(2) 5 0(2) = {£1} — 1.

s(1) = [(1) (ﬂ Cs(=1) = {(1) _01} .
Hence O(2) = SO(2) » {+1}.

where

The Klein four group is Ky = Z/27 x 7./ 2.

The tetrahedral group T is the subgroup of SO(3) that stabilises a tetrahedron centered at 0
in R3. That is,
T={9€S50@3)|g- A=A}

where A is an tetrahedron with center at O.

The alternating group A, is the subgroup of S,, of permutations that can be written as a
product of an even number of transpositions. Note that T"= A,.

The octohedral group O is the subgroup of SO(3) that stabilises an octohedron centered at
0 in R®. Note that O = S,.

The icoshedral group I is the subgroup of SO(3) that stabilises an icosohedron centered at 0
in R3. Note that I = 5.

Proposition 1.3. Let A € SO(3). There ezists positively oriented orthonormal basis B =
{b1,ba, b3} such that

cosf —sinf 0
[A]p = |sind cos 0O
0 0 1

In other words, there exists an invertible matric B (WITH POSITIVE DETERMINANT?)
such that

cosd —sinf 0
A= DB |sinf cosd 0| B~
0 0 1

Theorem 1.4 (Artin, Theorem 6.12.1). Let H be a finite subgroup of SO(3). Then exactly
one of the following is true:
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e H is a cyclic group Cy, of rotations by mutiples of 27 /k about a line, with k € Z>1,
e H is a dihedral group Dy of symmetries of a regqular k-gon.

e H is the tetrahedral group T (which has order 12)

e H is the octahedral group O (which has order 24)

e H is the icohosedral group I (which has order 60).

2. CENTRAL EXTENSIONS

The center of G is
Z(G)={z € G| if g € G then zg = gz}.
A central extension is a short exact sequence
1C5G5 61

such that i(C) C Z(G). Topic 2 of Tutorial 1 walks us through how to (re)construct G after
choosing a 2-cocycle 5: G x G — C. WHAT IS THE PRECISE DEFINITION OF A 2-cocyle?

Example 2. The following is a central extension:
1— {1, -1} 5 {1, 1,4, —i} B {1,-1} —» 1
where
i(l) =1,i(—-1) = -1,
p(1) = 1, p(~1) = 1,p(i) = —1, p(—i) = —1.
Choose 1 = —1 € p~*(1) and —1 =i € p~'(—1). Then, following Question 1, Topic 2, define
p(1,1)=-1, p(1,-1) = -1, f(—1,1) = -1, B(—-1,—-1) = 1.
Let
Gp={1,—-1} x {1,~1}
where x means the Cartesian product (and not the direct product). Define a multiplication
*: Gz x Gg — Gg by
(a, ) * (b, h) = (abB(g, h), gh).
Computing the multiplication table of éﬁ:

* | @11y (1,-1) (-1,1) (=1,-1)
(171> <_171) (17_1) (171) (_17_1)
(17—1) (_17_1> (171) (17—1> <_171)
(_171) (171) (17—1) (_171> (_17_1)
(-1,-1)| (1,-1) (-1,1) (-1,-1) (1,1)

where the (4, j) entry is row i x column j. Using this table, one can check that (—1,1) is the
identity for G, (1, 1) has order 2, (—1,—1) and (1, —1) both have order 4. This suggests that
the map ¢: Gz — {1,—1,i,—i} given by

is an isomorphism of groups, but to prove this, we need to check that they have the same
multiplication tables.
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Example 3. (The Hopf Fibration). See §9.4 of Artin.

The 2-dimensional special unitary group is

SU(2) = {A € SLy(C) | AA' = 1}
(T

SUQ — S8
|: Zo —|— ZEli T2 —|— ZE3i

a,bec,aa+bB:1}.

The map

. . — Xo,L1,To, T
_$2+I’3/L I0_$1Z:| (07 1,42, 3)7

is a bijection. Note that

1+ (1,0,0,0)
i = é _OZ —s (0,1,0,0)
i=2 (1) — (0,0,1,0)
i = ? (Z) — (0,0,0,1).

The equator of SU, is
E = {P € SU, | trace(P) = 0}.
In the 3-sphere S3, the equator corresponds to
E={(0,21,29,23) | 22 + 235 + 22 = 1}.

Given P € SU,, the conjugation action by P on FE, denoted 7p, rotates the sphere E = 52 (see
Artin). This gives us a surjective homomorphism

p: SU(2) — SO(3)
P — vp

and the following is a central extension:
1= {1,-1} & SU(2)(= Spin(3)) & SO(3) — 1.

This should help us understand Topic 2, Question 5, since the groups mentioned are finite
subgroups of SU(2) and SO(3).

3. THE CLASSIFICATION OF FINITELY GENERATED MODULES OVER PIDS, AND ITS
COROLLARIES

Theorem 3.1 (Theorem 5, Section 12.1, Dummit-Foot). (Fundamental Theorem, Existence:
Invariant Factor Form) Let R be a PID and let M be a finitely generated R-module. Then

(1) There exists r € Z>o and ay, g, . .., am € R such that ay,as, . .., ay are not units in R
and ajl|as] . .. |ay, such that

MR ®R/(a1)® R/(az) ® - ® R/(an).
(2) M is torsion-free if and only if M is free.
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(3)
Tor(M) = R/(ar) @ R/(as) @ --- & R (am).

In particular, M s a torsion module if and only if r = 0 and in this case the annihilator
of M is the ideal (ay,).

3.1. The Jordan normal Form.

4. MISCELLANEOUS

4.1. Generators and Relations. From Arun Ram’s website and §6.3 of Dummit and Foote.

Let S be a set (sometimes called the set of letters). A free group on S is a group F'(S) such
that if G is a group and ¢: S — G is a function then there exists a unique homomorphism
®: F(S) — G such that ®oi = ).

S 1 F(S)
X o

G
A word on S is a sequence
(s1,82,...) where s; € SUS™1U{1} and s; = 1 for all i sufficiently large.
A word (sq, 89, .. .) is reduced if

(1) si41 # s; " for all 4 with s; # 1, and
(2) if s, = 1 for some k, then s; = 1 for all ¢ > k.

Let

F(S) be the set of reduced words on S.

Proposition 4.1. F(S) is the unique (up to isomorphism) free group on S.

Let G be a group. A presentation of G is an exact sequence
R—H—-G—1

where R and H are free groups. A group G is presented by generators gy, ga, - . . , g, and relations
1,T2,...,Tm if

»
F{yi, yas - ym} = F{zy,29,.. .20} B G — 1.
is an exact sequence, where

V() =1 plai) = gi-
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Write
G=1(91,92,--sgn|r1i=r0="=1rpH=1)
where r; = r;(g1, 92, - - ., gn) are words in gi, g2, . .., g,- This means that
G=F(S)/N(ri,ra,...,7Tm)
where N(ry,rg,...,7,) is the minimal normal subgroup containing r1,rs, ..., 7y.

Proposition 4.2. Let f: {g1, 92, ..., 90} — H be a function. If the relations ry =19 = -+ =

rr, = 1 are also satisfied by f(gl), f(gg), o f(gn) then f uniquely extends to a homomorphism
f:G—H.

Proof. Let

F{yi,y2,- -, Um} LN Flzy,zg,..., 0.} = G — 1.
be a presentation of GG, where
V(y;) =15, m(2:) = gi
Define n": F{x1,2s,...,2,} — H by defining
'(z;) = f(9:)
and uniquely extending to the rest of F{xy, s, ..., z,} by the universal property of free groups.
Then kerm C kern’ (I—AIUH??A? 1 THH\AIK THIS IS WHAT ‘the relations r; = ry = -+ =1, = 1
are also satisfied by f(g1), f(92), ... f(g.)’ MEANS) so that the map
f:G=F{x,xe,...,0,} ket — H = F{xy,29,...,2,}/kern’
gkermr —— gkern’

is a well defined group homomorphism. O
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