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These are notes for Nora Ganter's MAST30005 Algebra course, written by Jon Xu, tutor for
the Thursday 3:15PM practise class. These were written by me for the purpose of processing
certain parts of the course, and is not intended to completely cover the material. In fact quite a
lot is missing, and some statements are made without proof (exercise: �ll in the proofs!). This
is DEFINITELY NOT a substitute for attending the lectures/consultations/tutorials.

Use at your own risk! Any constructive comments are welcome, my email address is

jyxu[at]student.unimelb.edu.au.

1. Semi-direct products

An exact sequence is

G0
d0−→ G1

d1−→ G2
d2−→ · · · dn−1−−−→ Gn,

where

• The Gi's are groups,
• The di's are group homomorphisms,
• ker(di+1) = im(di) for all i.

A short exact sequence is an exact sequence

1→ N
i−→ G

p−→ H → 1.

The above short exact sequence splits if there exists a homomorphism s : H → G such that
p ◦ s = 1H . In this case we write

1→ N
i−→ G

p

�
s
H → 1.

In this case, we have an action of H on N

H → Aut(N)
h 7→ s(h)(−)s(h)−1 = (−)h

Given two groups N and H and an action of H on N , we de�ne the semidirect product of N
and H to be the set

N oH = {(n, h) | n ∈ N, h ∈ H}

with multiplication de�ned by

(n, h)(m, k) = (n ·mh, hk).

Lemma 1.1. If

1→ N
i−→ G

p

�
s
H → 1.

is a split short exact sequence, then the map

Φ: N oH −→ G
(n, h) 7−→ i(n)s(h).

is an isomorphism of groups.
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Proof. Homomorphism.

Φ((n, h))Φ((m, k)) = i(n)s(h)i(m)s(k)

= i(n)s(h)i(m)s(h)−1s(h)s(k)

= i(n)mhs(hk)

= Φ((nmh, hk))

= Φ((n, h)(m, k)).

Bijective. Decompose G into right cosets of N , i.e

G = th∈HNs(h)

and {s(h) | h ∈ H} is a set of representatives. �

Proposition 1.2. The converse to the above is true (TO DO?).

Example 1. The following is a split short exact sequence:

1→ SO(2)
i−→ O(2)

p

�
s
{±1} → 1.

where

s(1) =

[
1 0
0 1

]
, s(−1) =

[
1 0
0 −1

]
.

Hence O(2) = SO(2) o {±1}.

The Klein four group is K4 = Z/2Z× Z/2Z.

The tetrahedral group T is the subgroup of SO(3) that stabilises a tetrahedron centered at 0
in R3. That is,

T = {g ∈ SO(3) | g · A = A},
where A is an tetrahedron with center at 0.

The alternating group An is the subgroup of Sn of permutations that can be written as a
product of an even number of transpositions. Note that T ∼= A4.

The octohedral group O is the subgroup of SO(3) that stabilises an octohedron centered at
0 in R3. Note that O ∼= S4.

The icoshedral group I is the subgroup of SO(3) that stabilises an icosohedron centered at 0
in R3. Note that I ∼= S5.

Proposition 1.3. Let A ∈ SO(3). There exists positively oriented orthonormal basis B =
{b1, b2, b3} such that

[A]B =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 .
In other words, there exists an invertible matrix B (WITH POSITIVE DETERMINANT?)
such that

A = B

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

B−1.

Theorem 1.4 (Artin, Theorem 6.12.1). Let H be a �nite subgroup of SO(3). Then exactly
one of the following is true:
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• H is a cyclic group Ck of rotations by mutiples of 2π/k about a line, with k ∈ Z≥1,
• H is a dihedral group Dk of symmetries of a regular k-gon.
• H is the tetrahedral group T (which has order 12)
• H is the octahedral group O (which has order 24)
• H is the icohosedral group I (which has order 60).

2. Central extensions

The center of G̃ is

Z(G̃) = {z ∈ G̃ | if g ∈ G̃ then zg = gz}.

A central extension is a short exact sequence

1→ C
i−→ G̃

p−→ G→ 1.

such that i(C) ⊆ Z(G̃). Topic 2 of Tutorial 1 walks us through how to (re)construct G̃ after
choosing a 2-cocycle β : G×G→ C. WHAT IS THE PRECISE DEFINITION OF A 2-cocyle?

Example 2. The following is a central extension:

1→ {1,−1} i−→ {1,−1, i,−i} p−→ {1,−1} → 1

where

i(1) = 1, i(−1) = −1,

p(1) = 1, p(−1) = 1, p(i) = −1, p(−i) = −1.

Choose 1̃ = −1 ∈ p−1(1) and −̃1 = i ∈ p−1(−1). Then, following Question 1, Topic 2, de�ne

β(1, 1) = −1, β(1,−1) = −1, β(−1, 1) = −1, β(−1,−1) = 1.

Let

G̃β = {1,−1} × {1,−1}

where × means the Cartesian product (and not the direct product). De�ne a multiplication
? : G̃β × G̃β → G̃β by

(a, g) ? (b, h) = (abβ(g, h), gh).

Computing the multiplication table of G̃β:

? (1, 1) (1,−1) (−1, 1) (−1,−1)
(1, 1) (−1, 1) (1,−1) (1, 1) (−1,−1)

(1,−1) (−1,−1) (1, 1) (1,−1) (−1, 1)
(−1, 1) (1, 1) (1,−1) (−1, 1) (−1,−1)

(−1,−1) (1,−1) (−1, 1) (−1,−1) (1, 1)

where the (i, j) entry is row i ? column j. Using this table, one can check that (−1, 1) is the
identity for G̃β, (1, 1) has order 2, (−1,−1) and (1,−1) both have order 4. This suggests that

the map ψ : G̃β → {1,−1, i,−i} given by

ψ(−1, 1) = 1, ψ(1, 1) = −1, ψ(−1,−1) = i, ψ(1,−1) = −i

is an isomorphism of groups, but to prove this, we need to check that they have the same
multiplication tables.
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Example 3. (The Hopf Fibration). See �9.4 of Artin.

The 2-dimensional special unitary group is

SU(2) =
{
A ∈ SL2(C) | AAt = 1

}
=

{[
a b
−b a

]∣∣∣∣a, b ∈ C, aa+ bb = 1

}
.

The map

SU2 −→ S3[
x0 + x1i x2 + x3i
−x2 + x3i x0 − x1i

]
7−→ (x0, x1, x2, x3),

is a bijection. Note that

1 7−→ (1, 0, 0, 0)

i =

[
i 0
0 −i

]
7−→ (0, 1, 0, 0)

j =

[
0 1
−1 0

]
7−→ (0, 0, 1, 0)

i =

[
0 i
i 0

]
7−→ (0, 0, 0, 1).

The equator of SU2 is

E = {P ∈ SU2 | trace(P ) = 0}.

In the 3-sphere S3, the equator corresponds to

E = {(0, x1, x2, x3) | x2
1 + x2

2 + x2
3 = 1}.

Given P ∈ SU2, the conjugation action by P on E, denoted γP , rotates the sphere E = S2 (see
Artin). This gives us a surjective homomorphism

p : SU(2) −→ SO(3)
P 7−→ γP

and the following is a central extension:

1→ {1,−1} i−→ SU(2)(∼= Spin(3))
p−→ SO(3)→ 1.

This should help us understand Topic 2, Question 5, since the groups mentioned are �nite
subgroups of SU(2) and SO(3).

3. The classification of finitely generated modules over PIDs, and its

corollaries

Theorem 3.1 (Theorem 5, Section 12.1, Dummit-Foot). (Fundamental Theorem, Existence:
Invariant Factor Form) Let R be a PID and let M be a �nitely generated R-module. Then

(1) There exists r ∈ Z≥0 and a1, a2, . . . , am ∈ R such that a1, a2, . . . , am are not units in R
and a1|a2| . . . |am such that

M ∼= Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am).

(2) M is torsion-free if and only if M is free.
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(3)

Tor(M) ∼= R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am).

In particular, M is a torsion module if and only if r = 0 and in this case the annihilator
of M is the ideal (am).

3.1. The Jordan normal Form.

4. Miscellaneous

4.1. Generators and Relations. From Arun Ram's website and �6.3 of Dummit and Foote.

Let S be a set (sometimes called the set of letters). A free group on S is a group F (S) such
that if G is a group and ψ : S → G is a function then there exists a unique homomorphism
Φ: F (S)→ G such that Φ ◦ i = ψ.

S F (S)

G

ψ

i

Φ

A word on S is a sequence

(s1, s2, . . .) where si ∈ S ∪ S−1 ∪ {1} and si = 1 for all i su�ciently large.

A word (s1, s2, . . .) is reduced if

(1) si+1 6= s−1
i for all i with si 6= 1, and

(2) if sk = 1 for some k, then si = 1 for all i ≥ k.

Let

F (S) be the set of reduced words on S.

Proposition 4.1. F (S) is the unique (up to isomorphism) free group on S.

Let G be a group. A presentation of G is an exact sequence

R→ H → G→ 1

where R andH are free groups. A group G is presented by generators g1, g2, . . . , gn and relations
r1, r2, . . . , rm if

F{y1, y2, . . . , ym}
ψ−→ F{x1, x2, . . . , xn}

p−→ G→ 1.

is an exact sequence, where

ψ(yj) = rj, p(xi) = gi.



ALGEBRA MAST30005 SEMESTER 1 2017 7

Write

G = 〈g1, g2, . . . , gn | r1 = r2 = · · · = rm = 1〉
where ri = ri(g1, g2, . . . , gn) are words in g1, g2, . . . , gn. This means that

G = F (S)/N(r1, r2, . . . , rm)

where N(r1, r2, . . . , rm) is the minimal normal subgroup containing r1, r2, . . . , rm.

Proposition 4.2. Let f̂ : {g1, g2, . . . , gn} → H be a function. If the relations r1 = r2 = · · · =

rk = 1 are also satis�ed by f̂(g1), f̂(g2), . . . f̂(gn) then f̂ uniquely extends to a homomorphism
f : G→ H .

Proof. Let

F{y1, y2, . . . , ym}
ψ−→ F{x1, x2, . . . , xn}

π−→ G→ 1.

be a presentation of G, where

ψ(yj) = rj, π(xi) = gi.

De�ne π′ : F{x1, x2, . . . , xn} → H by de�ning

π′(xi) = f̂(gi)

and uniquely extending to the rest of F{x1, x2, . . . , xn} by the universal property of free groups.
Then kerπ ⊆ kerπ′ (HUH??? I THINK THIS IS WHAT `the relations r1 = r2 = · · · = rk = 1

are also satis�ed by f̂(g1), f̂(g2), . . . f̂(gn)' MEANS) so that the map

f : G ∼= F{x1, x2, . . . , xn}/kerπ −→ H ∼= F{x1, x2, . . . , xn}/kerπ′
gkerπ 7−→ gkerπ′

is a well de�ned group homomorphism. �
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