ALGEBRA MAST30005 SEMESTER 1 2017

JON XU

Contents

1.	Semi-direct products	2
2.	Central extensions	4
3.	The classification of finitely generated modules over PIDs, and its corollaries	5
4.	Miscellaneous	6

Date: April 14, 2019.

JON XU

These are notes for Nora Ganter's MAST30005 Algebra course, written by Jon Xu, tutor for the Thursday 3:15PM practise class. These were written by me for the purpose of processing certain parts of the course, and is not intended to completely cover the material. In fact quite a lot is missing, and some statements are made without proof (exercise: fill in the proofs!). This is DEFINITELY NOT a substitute for attending the lectures/consultations/tutorials.

Use at your own risk! Any constructive comments are welcome, my email address is

jyxu[at]student.unimelb.edu.au.

1. Semi-direct products

An exact sequence is

$$G_0 \xrightarrow{d_0} G_1 \xrightarrow{d_1} G_2 \xrightarrow{d_2} \cdots \xrightarrow{d_{n-1}} G_n$$

where

- The G_i 's are groups,
- The d_i 's are group homomorphisms,
- $\ker(d_{i+1}) = \operatorname{im}(d_i)$ for all *i*.

A short exact sequence is an exact sequence

$$1 \to N \xrightarrow{i} G \xrightarrow{p} H \to 1.$$

The above short exact sequence *splits* if there exists a homomorphism $s: H \to G$ such that $p \circ s = 1_H$. In this case we write

$$1 \to N \xrightarrow{i} G \xleftarrow{p}{\underset{s}{\leftarrow}} H \to 1.$$

In this case, we have an action of H on N

$$\begin{array}{rcl} H & \to & \operatorname{Aut}(N) \\ h & \mapsto & s(h)(-)s(h)^{-1} = (-)^h \end{array}$$

Given two groups N and H and an action of H on N, we define the *semidirect product* of N and H to be the set

$$N \rtimes H = \{(n,h) \mid n \in N, h \in H\}$$

with multiplication defined by

$$(n,h)(m,k) = (n \cdot m^h, hk)$$

Lemma 1.1. If

$$1 \to N \xrightarrow{i} G \underset{s}{\overset{p}{\xleftarrow}} H \to 1.$$

is a split short exact sequence, then the map

$$\begin{array}{rccc} \Phi \colon N \rtimes H & \longrightarrow & G \\ (n,h) & \longmapsto & i(n)s(h). \end{array}$$

is an isomorphism of groups.

Proof. Homomorphism.

$$\Phi((n,h))\Phi((m,k)) = i(n)s(h)i(m)s(k)$$

= $i(n)s(h)i(m)s(h)^{-1}s(h)s(k)$
= $i(n)m^hs(hk)$
= $\Phi((nm^h, hk))$
= $\Phi((n,h)(m,k)).$

Bijective. Decompose G into right cosets of N, i.e.

$$G = \sqcup_{h \in H} Ns(h)$$

and $\{s(h) \mid h \in H\}$ is a set of representatives.

Proposition 1.2. The converse to the above is true (TO DO?).

Example 1. The following is a split short exact sequence:

$$1 \to SO(2) \xrightarrow{i} O(2) \xleftarrow{p}_{s} \{\pm 1\} \to 1.$$

where

$$s(1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad s(-1) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Hence $O(2) = SO(2) \rtimes \{\pm 1\}.$

The Klein four group is $K_4 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

The *tetrahedral group* T is the subgroup of SO(3) that stabilises a tetrahedron centered at 0 in \mathbb{R}^3 . That is,

$$T = \{g \in SO(3) \mid g \cdot A = A\},\$$

where A is an tetrahedron with center at 0.

The alternating group A_n is the subgroup of S_n of permutations that can be written as a product of an even number of transpositions. Note that $T \cong A_4$.

The octohedral group O is the subgroup of SO(3) that stabilises an octohedron centered at 0 in \mathbb{R}^3 . Note that $O \cong S_4$.

The *icoshedral group* I is the subgroup of SO(3) that stabilises an icosohedron centered at 0 in \mathbb{R}^3 . Note that $I \cong S_5$.

Proposition 1.3. Let $A \in SO(3)$. There exists positively oriented orthonormal basis $\mathcal{B} = \{b_1, b_2, b_3\}$ such that

$$[A]_{\mathcal{B}} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

In other words, there exists an invertible matrix B (WITH POSITIVE DETERMINANT?) such that

$$A = B \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} B^{-1}.$$

Theorem 1.4 (Artin, Theorem 6.12.1). Let H be a finite subgroup of SO(3). Then exactly one of the following is true:

- *H* is a cyclic group C_k of rotations by mutiples of $2\pi/k$ about a line, with $k \in \mathbb{Z}_{\geq 1}$,
- H is a dihedral group D_k of symmetries of a regular k-gon.
- H is the tetrahedral group T (which has order 12)
- *H* is the octahedral group *O* (which has order 24)
- *H* is the icohosedral group *I* (which has order 60).

2. Central extensions

The *center* of \tilde{G} is

$$Z(\tilde{G}) = \{ z \in \tilde{G} \mid \text{ if } g \in \tilde{G} \text{ then } zg = gz \}.$$

A *central extension* is a short exact sequence

$$1 \to C \xrightarrow{i} \tilde{G} \xrightarrow{p} G \to 1.$$

such that $i(C) \subseteq Z(\tilde{G})$. Topic 2 of Tutorial 1 walks us through how to (re)construct \tilde{G} after choosing a 2-cocycle $\beta: G \times G \to C$. WHAT IS THE PRECISE DEFINITION OF A 2-cocycle?

Example 2. The following is a central extension:

$$1 \to \{1, -1\} \xrightarrow{i} \{1, -1, i, -i\} \xrightarrow{p} \{1, -1\} \to 1$$

where

$$i(1) = 1, i(-1) = -1,$$

 $p(1) = 1, p(-1) = 1, p(i) = -1, p(-i) = -1.$

Choose $\tilde{1} = -1 \in p^{-1}(1)$ and $-1 = i \in p^{-1}(-1)$. Then, following Question 1, Topic 2, define

$$\beta(1,1) = -1, \ \beta(1,-1) = -1, \ \beta(-1,1) = -1, \ \beta(-1,-1) = 1.$$

Let

$$\tilde{G}_{\beta} = \{1, -1\} \times \{1, -1\}$$

where \times means the Cartesian product (and *not* the direct product). Define a multiplication $\star: \tilde{G}_{\beta} \times \tilde{G}_{\beta} \to \tilde{G}_{\beta}$ by

$$(a,g) \star (b,h) = (ab\beta(g,h),gh).$$

Computing the multiplication table of \tilde{G}_{β} :

where the (i, j) entry is row $i \star \text{column } j$. Using this table, one can check that (-1, 1) is the identity for \tilde{G}_{β} , (1, 1) has order 2, (-1, -1) and (1, -1) both have order 4. This suggests that the map $\psi \colon \tilde{G}_{\beta} \to \{1, -1, i, -i\}$ given by

$$\psi(-1,1) = 1, \psi(1,1) = -1, \psi(-1,-1) = i, \psi(1,-1) = -i$$

is an isomorphism of groups, but to prove this, we need to check that they have the same multiplication tables.

Example 3. (The Hopf Fibration). See §9.4 of Artin.

The 2-dimensional special unitary group is

$$SU(2) = \left\{ A \in SL_2(\mathbb{C}) \mid A\overline{A}^t = 1 \right\}$$
$$= \left\{ \begin{bmatrix} a & b \\ -\overline{b} & \overline{a} \end{bmatrix} \middle| a, b \in \mathbb{C}, a\overline{a} + b\overline{b} = 1 \right\}.$$

The map

$$\begin{array}{cccc} SU_2 & \longrightarrow & S^3 \\ \begin{bmatrix} x_0 + x_1 i & x_2 + x_3 i \\ -x_2 + x_3 i & x_0 - x_1 i \end{bmatrix} & \longmapsto & (x_0, x_1, x_2, x_3), \end{array}$$

is a bijection. Note that

$$i \mapsto (1, 0, 0, 0)$$

$$i = \begin{bmatrix} i & 0 \\ 0 & -i \\ -1 & 0 \end{bmatrix} \mapsto (0, 1, 0, 0)$$

$$j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ i & 0 \end{bmatrix} \mapsto (0, 0, 1, 0)$$

$$i = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \mapsto (0, 0, 0, 1).$$

The equator of SU_2 is

$$E = \{ P \in SU_2 \mid \operatorname{trace}(P) = 0 \}.$$

In the 3-sphere S^3 , the equator corresponds to

$$E = \{ (0, x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 = 1 \}$$

Given $P \in SU_2$, the conjugation action by P on E, denoted γ_P , rotates the sphere $E = S^2$ (see Artin). This gives us a surjective homomorphism

$$\begin{array}{cccc} p \colon SU(2) & \longrightarrow & SO(3) \\ P & \longmapsto & \gamma_P \end{array}$$

and the following is a central extension:

$$1 \to \{1, -1\} \xrightarrow{i} SU(2) \cong Spin(3)) \xrightarrow{p} SO(3) \to 1.$$

This should help us understand Topic 2, Question 5, since the groups mentioned are finite subgroups of SU(2) and SO(3).

3. The classification of finitely generated modules over PIDs, and its corollaries

Theorem 3.1 (Theorem 5, Section 12.1, Dummit-Foot). (Fundamental Theorem, Existence: Invariant Factor Form) Let R be a PID and let M be a finitely generated R-module. Then

(1) There exists $r \in \mathbb{Z}_{\geq 0}$ and $a_1, a_2, \ldots, a_m \in R$ such that a_1, a_2, \ldots, a_m are not units in Rand $a_1|a_2| \ldots |a_m|$ such that

$$M \cong R^r \oplus R/(a_1) \oplus R/(a_2) \oplus \cdots \oplus R/(a_m).$$

(2) M is torsion-free if and only if M is free.

(3)

$$Tor(M) \cong R/(a_1) \oplus R/(a_2) \oplus \cdots \oplus R/(a_m).$$

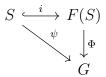
In particular, M is a torsion module if and only if r = 0 and in this case the annihilator of M is the ideal (a_m) .

3.1. The Jordan normal Form.

4. Miscellaneous

4.1. Generators and Relations. From Arun Ram's website and §6.3 of Dummit and Foote.

Let S be a set (sometimes called the set of *letters*). A *free group* on S is a group F(S) such that if G is a group and $\psi: S \to G$ is a function then there exists a unique homomorphism $\Phi: F(S) \to G$ such that $\Phi \circ i = \psi$.



A word on S is a sequence

 (s_1, s_2, \ldots) where $s_i \in S \cup S^{-1} \cup \{1\}$ and $s_i = 1$ for all *i* sufficiently large.

A word (s_1, s_2, \ldots) is reduced if

(1) $s_{i+1} \neq s_i^{-1}$ for all i with $s_i \neq 1$, and (2) if $s_k = 1$ for some k, then $s_i = 1$ for all $i \geq k$.

Let

F(S) be the set of reduced words on S.

Proposition 4.1. F(S) is the unique (up to isomorphism) free group on S.

Let G be a group. A *presentation* of G is an exact sequence

$$R \to H \to G \to 1$$

where R and H are free groups. A group G is *presented* by generators g_1, g_2, \ldots, g_n and relations r_1, r_2, \ldots, r_m if

$$F\{y_1, y_2, \dots, y_m\} \xrightarrow{\psi} F\{x_1, x_2, \dots, x_n\} \xrightarrow{p} G \to 1.$$

is an exact sequence, where

$$\psi(y_j) = r_j, \quad p(x_i) = g_i.$$

Write

$$G = \langle g_1, g_2, \dots, g_n \mid r_1 = r_2 = \dots = r_m = 1 \rangle$$

where $r_i = r_i(g_1, g_2, \dots, g_n)$ are words in g_1, g_2, \dots, g_n . This means that $G = F(S)/N(r_1, r_2, \dots, r_m)$

where $N(r_1, r_2, \ldots, r_m)$ is the minimal normal subgroup containing r_1, r_2, \ldots, r_m .

Proposition 4.2. Let $\hat{f}: \{g_1, g_2, \ldots, g_n\} \to H$ be a function. If the relations $r_1 = r_2 = \cdots = r_k = 1$ are also satisfied by $\hat{f}(g_1), \hat{f}(g_2), \ldots, \hat{f}(g_n)$ then \hat{f} uniquely extends to a homomorphism $f: G \to H$.

Proof. Let

$$F\{y_1, y_2, \dots, y_m\} \xrightarrow{\psi} F\{x_1, x_2, \dots, x_n\} \xrightarrow{\pi} G \to 1.$$

be a presentation of G, where

$$\psi(y_j) = r_j, \quad \pi(x_i) = g_i$$

Define $\pi' \colon F\{x_1, x_2, \ldots, x_n\} \to H$ by defining

 $\pi'(x_i) = \hat{f}(g_i)$

and uniquely extending to the rest of $F\{x_1, x_2, \ldots, x_n\}$ by the universal property of free groups. Then ker $\pi \subseteq \text{ker}\pi'$ (HUH??? I THINK THIS IS WHAT 'the relations $r_1 = r_2 = \cdots = r_k = 1$ are also satisfied by $\hat{f}(g_1), \hat{f}(g_2), \ldots \hat{f}(g_n)$ ' MEANS) so that the map

$$f: G \cong F\{x_1, x_2, \dots, x_n\} / \ker \pi \longrightarrow H \cong F\{x_1, x_2, \dots, x_n\} / \ker \pi'$$
$$g \ker \pi \longmapsto g \ker \pi'$$

is a well defined group homomorphism.